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A B S T R A C T  

In this note we show that the minimum distortion required to embed all 

n-point metric spaces into the Banach space £p is between (cl/p) log n and 

(c2/p) logn, where c2 > Cl > 0 are absolute constants and 1 < p < logn. 

The lower bound is obtained by a generalization of a method of Linial et 

al. [LLR95], by showing that constant-degree expanders (considered as 

metric spaces) cannot be embedded any better. 

1. I n t r o d u c t i o n  

Let M be a metr ic  space with a metr ic  p, let X be a normed space (whose norm 

will be  denoted by ][.[1), and  let f :  M -+ X be a mapping.  We say tha t  f is a 

D - e m b e d d i n g  (or a mapp ing  with distortion at most  D),  D _> 1 a real number ,  

if we have 
1 

~ p ( x , y )  <_ ]If(x) - f(y)ll  -< p(x,y) 

for any  two points  x, y E M. We say tha t  M D-embeds  into X if there exists a 

D-embedding** f :  M --+ X.  

* Research supported by Czech Republic Grant GACR 201/94/2167 and Charles 
University grants No. 351 and 361. 

** A number of various terms besides the mentioned ones are used in the 
literature in this context; e.g., a D-embedding is also called a D-isomorphism, a 
D-11peomorphism, etc. 
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The D-embeddability of finite metric spaces into various normed spaces was 

investigated in the context of the local Banach space theory ([Efn69a], [Efn69b], 

[JL84], [Sou85], [BMW86], [JLS87], [AR92], [Ma95]), and it seems that  it can be 

of considerable interest also in more applied areas (see [LLR95]). 

Let the symbol gp denote the n-dimensional real vector space equipped with 

the Lp-norm, given by ][(Xl,X2,... ,Xn)t] p = ( E L 1  [xi[P) lip (for 1 _< p < oo). 

Similarly gp denotes the space of countable sequences of real numbers with a finite 

Lp-norm. For a metric space M, let Dp(M) be the minimum D such that  M can 

be D-embedded into gp, and let Dp(n) be the supremum of Dp(M) over all n-point 

metric spaces M. Since any n-point subset of gp can be isometrically embedded 

into ~(n-1)/2 (see e.g. [Fic88]), we can restrict our attention to embeddings into 

finite-dimensional gp spaces. 

The most well-studied case is that  of p = 2, where we are dealing with embed- 

dings into the usual Euclidean space. It is easy to find a 4-point metric space 

which cannot be isometrically embedded into any Euclidean space, but it is not so 

easy to prove that  D2(n) -+ oo for n -+ oo; this was probably first done by Enflo 

[Efn69b], whose proof yields D2(n) = f t ( ~ )  (his example is the cube {0, 1} k 

with the L1 metric, n = 2k; see also [Efn69a]). Bourgain [Bou85] proved an 

upper bound D2(n) = O(logn) and a lower bound D2(n) = f l(logn/loglogn).  

The lower bound is non-constructive, using random graphs and a counting ar- 

gument. Linial et al. [LLR95] discovered another lower bound technique, which 

allowed them to show the asymptotically tight lower bound D2(n) = fl(logn); 

their proof, unlike Bourgain's, yields an explicit metric space exhibiting the lower 

bound (one can say that  their method slightly resembles Enflo's, with expander 

graphs replacing the Ll-cube). 

The situation for other values of p has been understood less satisfactorily. 

Concerning upper bounds, Bourgain's embedding technique in fact proves Dp(n) 

= O(logn) for any p (with the constant of proportionality independent of p). 

Concerning lower bounds, the argument of Linial et hi. [LLR95] shows Dp(n) = 

fl(logn) for any p E [1, 2]. For p > 2, however, the best known lower bound was 

apparently one following from the results of Bourgain et hi. [BMW86], which is 

c,(logn) 1/2-e, with e > 0 an arbitrarily small number and c, > 0 depending on 

e. Here we obtain asymptotically tight bounds: 

THEOREM 1 : 

(i) There exist constants Cl > 0 and no such that for any p > 1 and any 
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n _> no there exists an n-point metric space which D-embeds into £p only 

for D >_ (cl /p)  log n. 

(ii) Any n-point metric space can be embedded into £p with distortion at most 

(c2/p) logn, where c2 is a constant and 1 _< p < logn. 

Part  (i) is proved in section 2 by generalizing the method of Linial et al. 

[LLR95]. Part  (ii) is proved in section 4 by modifying Bourgain's embedding 

method very slightly. 

2. E x p a n d e r s  

Let G = (V,E) be a (simple, unoriented) graph on the vertex set V = 

{ 1 , 2 , . . . , n ) .  We assume that G is d-regular (every vertex has exactly d 

neighbors) with d a constant (while n is a variable attaining arbitrarily large 

values). The graph G is called an e x p a n d e r  if there exists a constant (I) > 0 

(independent of n; (I) is called the c o n d u c t a n c e  of G) such that  for any subset 

A C V with IAI < n/2 we have 

(1) i{{i,j} e E;i  e A , j  E V \  A}I >_ (~IAI. 

It can be shown that  a random d-regular graph is an expander (with a suitable 

(I) = (I)(d)) with a positive probability. Sophisticated explicit constructions of 

expanders are also known - -  see e.g. [AS92] for background information and 

references. 

If Xl, x 2 , . . . ,  xn are real numbers, their m e d i a n  is defined as a real number m 

such that  I{i;xi << m}l > [n/2J and I{i;xi > m}l > [n/2J (thus, for n even, the 

median need not be determined uniquely). A basic property of expanders we use 

is the following (apparently due to Sinclair and Jerrum [JS88]; see e.g. Lov~sz 

[Lov93], Ex. 11.30): 

LEMMA 2: Let G be an expander with conductance • > O, let x l ,x2 , . . .  ,xn be 

arbitrary real numbers, and let m be their median. Then 

(2) Ix, - x j l  >_ • Ix, - ml .  
{i,j}6E i6V 

The proof of (2) has few lines. Inequality (1) can be viewed as a special case 

of (2), where the xi's only attain values 0 and 1 (set xi = 1 for i 6 A and x~ = 0 

otherwise). 
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The key to the non-embeddability result of Linial et al. [LLR95] is a suitable 

generalization of (2) for the xi's being elements of a Banach space instead of real 

numbers. Let K = (y) denote the set of edges of the complete graph with vertex 

set V. A simple consequence of (2) is the following: 

(3) Z I~,- xjl > ~' - n ~  ~-" Ixi-xjl, 
{i,j}eE {i,j}EK 

Indeed, since (3) is clearly translation-invariant (it is not changed by adding the 

same real number to each xi),  we may assume that 0 is a median of the xi's. 

Then we have ~ ( i , j } e K  I xi -- xJl <-- Y~{i,j}eK(IXil + IZJl) = (n -- 1) ~ i e V  Ixil, so 

(3) follows from (2). 

Linial et al. [LLR95] essentially observe (although they formulate it in a some- 

what different manner) that (3) holds also for any x~ ,x2 , . . .  ,xn C tl:  

(4) ~ IIx~ - ~jlll > -n"-'-~-i ~ llx~-xjlla, 
{i,j}eE {i,j}EK 

This is an immediate consequence of (3): write each xi E gl in coordinates, use 

(3) for each coordinate separately, and sum the resulting inequalities. Since any 

finite subset of a n y / p  with 1 < p < 2 can be isometrically embedded into gl 

[BDK66], an analog of (4) holds also in these gp'S, in particular in a Euclidean 

space. 

For p > 2, we need an "Lp-analog" of (3): 

PROPOSITION 3: Let G be a d-regular expander with conductance ¢b, let 

x l , x 2 , . . .  ,xn  be real numbers with median m, and let p > 1. Then we have 

(~,/2p)~ 
I~ - xjl p - ¢0-~ E Ix~- ml" 

{i,j}eE iev 

(~/4p)p 1 
(5) > d p-1 n -  1 Z Ixi - xjlp" 

{i,j}eK 

The version of this result for p = 2 was essentially proved by Sinclair and 

Jerrum [JS88] (the method goes back to Alon [Alo86]); the result for a general 

p doesn't seem to be known. We prove it in section 3 below by generalizing the 

known proof of the p = 2 case (following the presentation of Lov~sz [Lov93], 

Ex. 11.32). 
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As a consequence we get that  for any xl,  x 2 , . . . ,  xn E gp, 

(6) E " x i - x J " P >  ( p ) P  1 E '[xi-xJ"PP ' 
{i,j}eE -- n - 1 {i,j}eK 

with Co = ¢~/4d 1-1/p a positive constant (this again follows by applying (5) to 

each coordinate and summing up). 

To derive Theorem l(i) from (6), we consider the expander G as an n-point 

metric space, with the metric p given by the usual graph-theoretic distance of 

vertices. Let us consider the ratio 

Rp : ([-~[ E{i'j}EEP(i'J)P)I/P 

( [--~[ E{i,j}EK P(i,j)P) alp" 

The numerator  is the pth degree average of the edge length, which is 1 by 

definition. The denominator is the pth degree average of the distance of two 

vertices of G. Since G is d-regular, at most 1 + d + .-- + d k _< 2d k vertices of 

G have distance at most k from a given vertex, and from this one can see that  

at least a fixed fraction of the pairs {i , j}  C K satisfies p(i , j)  > lOgd(n/4 ) (say). 

Therefore Rp -- O(1 / log  n). 

Next, suppose that  f : V -+ gp is a D-embedding, and let a be the metric on V 

given by a( i , j )  -- ][f(i) - f(J)[Ip. Define the ratio R~ analogously to Rp. Then 

inequality (6) shows that  R,, >_ c'/p, with c' = ~b/4d a positive constant (we use 

IE[ = dn/2  and [K I = n(n - 1)/2). On the other hand, if f is a D-embedding, 

we should have R,, <_ DRp, and hence D > (el~p) logn as claimed in Theorem 1. 

| 

3. A p - i n e q u a l i t y  for  e x p a n d e r s  

For a real number x <: 0, let x p stand for - ( - x )  p. First we note the following 

estimate: 

LEMMA 4: For any real numbers a, b and any p >_ 1, we have 

[ap - bVl < pla - b[ (]at p-1 + ]blP-1). 

Proof: By symmetry,  we may assume a _> [b[ > O, and by re-scaling we may 

suppose a = 1, so it is enough to show 1 - b p _< p(1 - b) for any b C ( - 1 ,  1). 
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Finally, by writing x = 1 - b we pass to (1 - x) p > 1 - px  which is a well-known 

(Bernoulli's) inequality. | 

Proo f  o f  Proposit ion 3: Let p, Xl, x 2 , . . . ,  x,~, and m be as in the Proposition; 

we may assume m = 0. For the sake of brevity, put 

S =  ~ Ixi - xjl  p, T = Z Ixilp" 
{i,j}eE icy  

By (2) applied to the numbers xP , . . . ,  x p we have 

{id}eE 

Using Lemma 4, we further get that  the right-hand side is at most 

p~-]~{i,j}eEuijvij, where uij = Ixi - xjl ,  vii = Ixd p-1 + Ixjt p-1. By Hblder's 

inequality, we have 

q where q = p / ( p -  1). We note that  ~EUi~ = S, and we estimate vij = 

(Ixil "-1  + IxjlP-1) q < 2 q (Ixd ( ' - l )q  + Ixjl (p-1)q) = 2q (Ixil p + IxjlP); hence, 

using the d-regularity of G, we get 

vijq _< 2 (Ixil p + Izjl p) = 2d 1/q Ixil p = 2d l /qT  Uq. 

Combining the whole chain of inequalities yields C T  < pSUP2d l /qT  1/q, hence 

S > ( ¢ / 2 p ) P d - ( P - D T ,  which is the first inequality in Proposition 3. The second 

inequality follows by estimating Ixi - xjlP < 2 p (Ixil p + IxjlP). | 

4. A n  upper  b o u n d  

Here we prove part  (ii) of Theorem 1. We use the method invented by 

Bourgain [Bou85]. This method has been used, with small modifications, in 

a number of other papers ([JLS87], [Ma91], [LLR95], [Ma95]), and the author of 

the present note finds it already somewhat embarrassing to repeat essentially the 

same thing here again; so the presentation is somewhat sketchy. On the other 

hand, it is interesting that  one can get a tight upper bound also in terms of p. 

The proof is based on the following lemma: 
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LEMMA 5: Let M be an n-point metric space with a metric p. Let x, y be two 

distinct points of M, and let s > 2 be a parameter. Then there exist reM numbers 

A1, A 2 , . . . ,  At _~ 0 with A1 + . . .  + At = p(x, y)/4, where t = [log s nJ + 1, and 

such that the following holds for each i = 1 ,2 , . . .  ,t: if Ai C M is a randomly 

chosen subset of X ,  with each point of X included in Ai independently with 

probability 1/s i, then the probability Pi of the event 'lp(x, Ai) - p(y, Ai)l >_ Ai" 

satisfies P~ > 1/8s. 

Proof sketch: As shown in [LLR95] (or [Bou85] with a slightly different 

formulation)*, the numbers Ai can be chosen in such a way that  Pi is at least 

the probability that A~ n $1 = 0 and at the same time Ai N $2 ¢ 0, where $1 is a 

certain subset of X of size < s i and 5:2 is another subset of X, disjoint from $1, 

of cardinality _> s ~-1. A detailed calculation showing that  the latter probability 

is at least 1/8s is given in [Ma95, Lemma 4.1]. | 

Proof of Theorem 1(ii): Let (M, p) be a given n-point metric space. Fix s = 2 p, 

t = [log s nJ + 1, and for each i = 1, 2 , . . . ,  t choose r independent random subsets 

A l l , . . . ,  Air, each Aij C_ X being chosen as the A~ in Lemma 5 (i.e. each point 

included with probability 1/si). If r is chosen sufficiently large, by Lemma 5 

we may assume that  for each x, y E X and each i = I, 2 , . . . ,  t, the inequality 

Ip(x, Aij) - p(y, Aij)l >__ Ai holds for at least r/16s indices j ,  where Ai depends 

on x,y  and is as in the Lemma (one can take r = const .s logn,  as can be shown 

using a suitable version of the Chernoff inequality). We fix such a collection of 

the Aij and define a mapping f : M -+ £~r: if the coordinates in £~r are indexed 

the same way as the sets Aij, we define f componentwise by f(x)i j  = p(x, Aij). 

Since Ip(x, A) - p ( y ,  A)I <_ p(x, y) holds for any set A, we obtain 

I I f (x)  - f ( y )  llp -< tl/Prl/pP( x, Y)" 

On the other hand, we have 

\i----1 j----1 

1/p (X~'t \ 1/~ 

- \ i _ - ~  16s ] 

t p using Hhlder s inequality, we get Ei=i hi ~-- (Ei hi)  p / tp-i = (p(x, y)/4)P/t p-l, 

* The proofs in [LLR95] and [Bou85] argue for the s -- 2 case, but the generalization 
to an arbitrary s is entirely straightforward. 
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hence I[f(x) - f ( y ) l ] p  > ~ ( r / s ) l / p t - ( v - W P p ( x , y ) .  Thus after an appropriate 

scaling, f is a D-embedding with D = O(t) = O(logn/p).  | 
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