ON EMBEDDING EXPANDERS INTO ℓ_p SPACES

BY

JIŘÍ MATOUŠEK*

Department of Applied Mathematics, Charles University Malostranskd ndm. 25, 118 O0 Praha 1, Czech Republic e-mail: matousek@kam.mff.cuni.cz

ABSTRACT

In this note we show that the minimum distortion required to embed all *n*-point metric spaces into the Banach space ℓ_p is between (c_1/p) log *n* and (c_2/p) log *n*, where $c_2 > c_1 > 0$ are absolute constants and $1 \leq p < \log n$. The lower bound is obtained by a generalization of a method of Linial et al. [LLR95], by showing that constant-degree expanders (considered as metric spaces) cannot be embedded any better.

1. Introduction

Let M be a metric space with a metric ρ , let X be a normed space (whose norm will be denoted by $\|.\|$, and let $f: M \to X$ be a mapping. We say that f is a D-embedding (or a mapping with *distortion* at most D), $D \ge 1$ a real number, if we have

$$
\frac{1}{D}\rho(x,y)\leq ||f(x)-f(y)||\leq \rho(x,y)
$$

for any two points $x, y \in M$. We say that M D-embeds into X if there exists a D-embedding** $f: M \to X$.

^{*} Research supported by Czech Republic Grant GACR 201/94/2167 and Charles University grants No. 351 and 361.

^{**} A number of various terms besides the mentioned ones are used in the literature in this context; e.g., a D-embedding is also called a *D-isomorphism, a D-11peomorphism,* etc. Received January 26, 1996

190 J. MATOUŠEK Isr. J. Math.

The D-embeddability of finite metric spaces into various normed spaces was investigated in the context of the local Banach space theory ([Efn69a], [Efn69b], [JL84], [Sou85], [BMW86], [JLS87], [AR92], [Ma95]), and it seems that it can be of considerable interest also in more applied areas (see [LLR95]).

Let the symbol ℓ_p^n denote the *n*-dimensional real vector space equipped with the L_p -norm, given by $||(x_1, x_2,..., x_n)||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$ (for $1 \leq p < \infty$). Similarly ℓ_p denotes the space of countable sequences of real numbers with a finite L_p -norm. For a metric space M, let $D_p(M)$ be the minimum D such that M can be D-embedded into ℓ_p , and let $D_p(n)$ be the supremum of $D_p(M)$ over all *n*-point metric spaces M. Since any n-point subset of ℓ_p can be isometrically embedded into $\ell_p^{n(n-1)/2}$ (see e.g. [Fic88]), we can restrict our attention to embeddings into finite-dimensional ℓ_p spaces.

The most well-studied case is that of $p = 2$, where we are dealing with embeddings into the usual Euclidean space. It is easy to find a 4-point metric space which cannot be isometrically embedded into any Euclidean space, but it is not so easy to prove that $D_2(n) \to \infty$ for $n \to \infty$; this was probably first done by Enflo [Efn69b], whose proof yields $D_2(n) = \Omega(\sqrt{\log n})$ (his example is the cube $\{0, 1\}^k$) with the L_1 metric, $n = 2^k$; see also [Efn69a]). Bourgain [Bou85] proved an upper bound $D_2(n) = O(\log n)$ and a lower bound $D_2(n) = \Omega(\log n / \log \log n)$. The lower bound is non-constructive, using random graphs and a counting argument. Linial et al. [LLR95] discovered another lower bound technique, which allowed them to show the asymptotically tight lower bound $D_2(n) = \Omega(\log n)$; their proof, unlike Bourgain's, yields an explicit metric space exhibiting the lower bound (one can say that their method slightly resembles Enflo's, with expander graphs replacing the L_1 -cube).

The situation for other values of p has been understood less satisfactorily. Concerning upper bounds, Bourgain's embedding technique in fact proves $D_p(n)$ $= O(\log n)$ for any p (with the constant of proportionality independent of p). Concerning lower bounds, the argument of Linial et al. [LLR95] shows $D_p(n)$ = $\Omega(\log n)$ for any $p \in [1, 2]$. For $p > 2$, however, the best known lower bound was apparently one following from the results of Bourgain et al. [BMW86], which is $c_{\epsilon}(\log n)^{1/2-\epsilon}$, with $\epsilon > 0$ an arbitrarily small number and $c_{\epsilon} > 0$ depending on ε . Here we obtain asymptotically tight bounds:

THEOREM 1:

(i) There exist constants $c_1 > 0$ and n_0 such that for any $p \ge 1$ and any

 $n \geq n_0$ there exists an *n*-point metric space which D-embeds into ℓ_p only *for* $D \ge (c_1/p) \log n$.

(ii) *Any n-point metric space can be embedded into* ℓ_p *with distortion at most* (c_2/p) log *n*, where c_2 *is a constant and* $1 \leq p < \log n$.

Part (i) is proved in section 2 by generalizing the method of Linial et al. [LLR95]. Part (ii) is proved in section 4 by modifying Bourgain's embedding method very slightly.

2. Expanders

Let $G = (V, E)$ be a (simple, unoriented) graph on the vertex set $V =$ $\{1,2,\ldots,n\}$. We assume that G is d-regular (every vertex has exactly d neighbors) with d a constant (while n is a variable attaining arbitrarily large values). The graph G is called an expander if there exists a constant $\Phi > 0$ (independent of n; Φ is called the **conductance** of G) such that for any subset $A \subseteq V$ with $|A| \leq n/2$ we have

(1)
$$
|\{(i,j)\in E; i\in A, j\in V\setminus A\}| \geq \Phi|A|.
$$

It can be shown that a random d-regular graph is an expander (with a suitable $\Phi = \Phi(d)$) with a positive probability. Sophisticated explicit constructions of expanders are also known $-$ see e.g. [AS92] for background information and references.

If x_1, x_2, \ldots, x_n are real numbers, their **median** is defined as a real number m such that $|\{i; x_i \leq m\}| \geq \lfloor n/2 \rfloor$ and $|\{i; x_i \geq m\}| \geq \lfloor n/2 \rfloor$ (thus, for n even, the median need not be determined uniquely). A basic property of expanders we use is the following (apparently due to Sinclair and Jerrum [JS88]; see e.g. Lovász [Lov93], Ex. 11.30):

LEMMA 2: Let G be an expander with conductance $\Phi > 0$, let x_1, x_2, \ldots, x_n be *arbitrary* real *numbers, and let m be* their *median. Then*

(2)
$$
\sum_{\{i,j\}\in E}|x_i-x_j|\geq \Phi \sum_{i\in V}|x_i-m|.
$$

The proof of (2) has few lines. Inequality (1) can be viewed as a special case of (2), where the x_i 's only attain values 0 and 1 (set $x_i = 1$ for $i \in A$ and $x_i = 0$ otherwise).

192 J. MATOUŠEK Isr. J. Math.

The key to the non-embeddability result of Linial et al. [LLR95] is a suitable generalization of (2) for the x_i 's being elements of a Banach space instead of real numbers. Let $K = \binom{V}{2}$ denote the set of edges of the complete graph with vertex set V . A simple consequence of (2) is the following:

(3)
$$
\sum_{\{i,j\}\in E} |x_i - x_j| \ge \frac{\Phi}{n-1} \sum_{\{i,j\}\in K} |x_i - x_j|.
$$

Indeed, since (3) is clearly translation-invariant (it is not changed by adding the same real number to each x_i), we may assume that 0 is a median of the x_i 's. Then we have $\sum_{\{i,j\}\in K} |x_i - x_j| \leq \sum_{\{i,j\}\in K} (|x_i| + |x_j|) = (n-1) \sum_{i\in V} |x_i|$, so (3) follows from (2).

Linial et al. [LLR95] essentially observe (although they formulate it in a somewhat different manner) that (3) holds also for any $x_1, x_2, \ldots, x_n \in \ell_1$:

(4)
$$
\sum_{\{i,j\}\in E} ||x_i - x_j||_1 \geq \frac{\Phi}{n-1} \sum_{\{i,j\}\in K} ||x_i - x_j||_1.
$$

This is an immediate consequence of (3): write each $x_i \in \ell_1$ in coordinates, use (3) for each coordinate separately, and sum the resulting inequalities. Since any finite subset of any ℓ_p with $1 \leq p \leq 2$ can be isometrically embedded into ℓ_1 [BDK66], an analog of (4) holds also in these ℓ_p 's, in particular in a Euclidean space.

For $p > 2$, we need an "L_p-analog" of (3):

PROPOSITION 3: Let G be a *d*-regular expander with conductance Φ , let x_1, x_2, \ldots, x_n be real numbers with median m, and let $p > 1$. Then we have

$$
\sum_{\{i,j\}\in E} |x_i - x_j|^p \ge \frac{(\Phi/2p)^p}{d^{p-1}} \sum_{i \in V} |x_i - m|^p
$$
\n
$$
\ge \frac{(\Phi/4p)^p}{d^{p-1}} \frac{1}{n-1} \sum_{\{i,j\}\in K} |x_i - x_j|^p.
$$

The version of this result for $p = 2$ was essentially proved by Sinclair and Jerrum [JS88] (the method goes back to Alon [Alo86]); the result for a general p doesn't seem to be known. We prove it in section 3 below by generalizing the known proof of the $p = 2$ case (following the presentation of Lovász [Lov93], Ex. 11.32).

As a consequence we get that for any $x_1, x_2,..., x_n \in \ell_p$,

(6)
$$
\sum_{\{i,j\}\in E} ||x_i - x_j||_p^p \ge \left(\frac{c_0}{p}\right)^p \frac{1}{n-1} \sum_{\{i,j\}\in K} ||x_i - x_j||_p^p,
$$

with $c_0 = \Phi/4d^{1-1/p}$ a positive constant (this again follows by applying (5) to each coordinate and summing up).

To derive Theorem 1(i) from (6), we consider the expander G as an n-point metric space, with the metric ρ given by the usual graph-theoretic distance of vertices. Let us consider the ratio

$$
R_{\rho} = \frac{\left(\frac{1}{|E|} \sum_{\{i,j\} \in E} \rho(i,j)^p\right)^{1/p}}{\left(\frac{1}{|K|} \sum_{\{i,j\} \in K} \rho(i,j)^p\right)^{1/p}}.
$$

The numerator is the pth degree average of the edge length, which is 1 by definition. The denominator is the pth degree average of the distance of two vertices of G. Since G is d-regular, at most $1 + d + \cdots + d^k \leq 2d^k$ vertices of G have distance at most k from a given vertex, and from this one can see that at least a fixed fraction of the pairs $\{i,j\} \in K$ satisfies $\rho(i,j) \ge \log_d(n/4)$ (say). Therefore $R_{\rho} = O(1/\log n)$.

Next, suppose that $f: V \to \ell_p$ is a D-embedding, and let σ be the metric on V given by $\sigma(i,j) = ||f(i) - f(j)||_p$. Define the ratio R_{σ} analogously to R_{ρ} . Then inequality (6) shows that $R_{\sigma} \ge c'/p$, with $c' = \Phi/4d$ a positive constant (we use $|E| = dn/2$ and $|K| = n(n-1)/2$. On the other hand, if f is a D-embedding, we should have $R_{\sigma} \leq DR_{\rho}$, and hence $D \geq (c_1/p) \log n$ as claimed in Theorem 1. **|**

3. A p-inequality for expanders

For a real number $x < 0$, let x^p stand for $-(-x)^p$. First we note the following estimate:

LEMMA 4: *For any real numbers a, b and any* $p \geq 1$ *, we have*

$$
|a^p-b^p| \le p|a-b| (|a|^{p-1}+|b|^{p-1}).
$$

Proof: By symmetry, we may assume $a \geq |b| > 0$, and by re-scaling we may suppose $a = 1$, so it is enough to show $1 - b^p \le p(1 - b)$ for any $b \in (-1, 1)$.

Finally, by writing $x = 1 - b$ we pass to $(1 - x)^p \ge 1 - px$ which is a well-known (Bernoulli's) inequality. |

Proof of Proposition 3: Let p, x_1, x_2, \ldots, x_n , and m be as in the Proposition; we may assume $m = 0$. For the sake of brevity, put

$$
S = \sum_{\{i,j\} \in E} |x_i - x_j|^p, \quad T = \sum_{i \in V} |x_i|^p.
$$

By (2) applied to the numbers x_1^p, \ldots, x_n^p we have

$$
\Phi T \leq \sum_{\{i,j\} \in E} |x_i^p - x_j^p|.
$$

Using Lemma 4, we further get that the right-hand side is at most $p\sum_{\{i,j\}\in E}u_{ij}v_{ij}$, where $u_{ij} = |x_i - x_j|$, $v_{ij} = |x_i|^{p-1} + |x_j|^{p-1}$. By Hölder's inequality, we have

$$
\sum_{E} u_{ij} v_{ij} \leq \left(\sum_{E} u_{ij}^p\right)^{1/p} \left(\sum_{E} v_{ij}^q\right)^{1/q}
$$

where $q = p/(p - 1)$. We note that $\sum_E u_{ij}^p = S$, and we estimate $v_{ij}^q =$ $(|x_i|^{p-1} + |x_j|^{p-1})^q \leq 2^q (|x_i|^{(p-1)q} + |x_j|^{(p-1)q}) = 2^q (|x_i|^p + |x_j|^p);$ hence, using the d-regularity of G , we get

$$
\left(\sum_E v_{ij}^q\right)^{1/q} \leq 2\left(\sum_E (|x_i|^p + |x_j|^p)\right)^{1/q} = 2d^{1/q}\left(\sum_{i\in V} |x_i|^p\right)^{1/q} = 2d^{1/q}T^{1/q}.
$$

Combining the whole chain of inequalities yields $\Phi T \leq pS^{1/p}2d^{1/q}T^{1/q}$, hence $S \geq (\Phi/2p)^{p}d^{-(p-1)}T$, which is the first inequality in Proposition 3. The second inequality follows by estimating $|x_i - x_j|^p \leq 2^p (|x_i|^p + |x_j|^p)$.

4. An upper bound

Here we prove part (ii) of Theorem 1. We use the method invented by Bourgain [Bou85]. This method has been used, with small modifications, in a number of other papers ([JLS87], [Ma91], [LLR95], [Ma95]), and the author of the present note finds it already somewhat embarrassing to repeat essentially the same thing here again; so the presentation is somewhat sketchy. On the other hand, it is interesting that one can get a tight upper bound also in terms of p.

The proof is based on the following lemma:

LEMMA 5: *Let M be an n-point metric* space *with a metric p.* Let *x, y be two distinct points of M, and let* $s \geq 2$ *be a parameter. Then there exist real numbers* $\Delta_1, \Delta_2, \ldots, \Delta_t \geq 0$ *with* $\Delta_1 + \cdots + \Delta_t = \rho(x, y)/4$, *where* $t = \lfloor \log_s n \rfloor + 1$, and such that the following holds for each $i = 1, 2, \ldots, t$: if $A_i \subseteq M$ is a randomly *chosen subset of X, with each point of X included in* A_i *independently with* probability $1/s^i$, then the probability P_i of the event $\left|\rho(x, A_i) - \rho(y, A_i)\right| \geq \Delta_i$ " satisfies $P_i \geq 1/8s$.

Proof sketch: As shown in [LLR95] (or [Bou85] with a slightly different formulation)^{*}, the numbers Δ_i can be chosen in such a way that P_i is at least the probability that $A_i \cap S_1 = \emptyset$ and at the same time $A_i \cap S_2 \neq \emptyset$, where S_1 is a certain subset of X of size $\langle s^i \rangle$ and S_2 is another subset of X, disjoint from S_1 , of cardinality $\geq s^{i-1}$. A detailed calculation showing that the latter probability is at least $1/8s$ is given in [Ma95, Lemma 4.1].

Proof of Theorem 1(ii): Let (M, ρ) be a given *n*-point metric space. Fix $s = 2^p$, $t = \lfloor \log_s n \rfloor + 1$, and for each $i = 1, 2, \ldots, t$ choose r independent random subsets A_{i1},\ldots, A_{ir} , each $A_{ij} \subseteq X$ being chosen as the A_i in Lemma 5 (i.e. each point included with probability $1/sⁱ$). If r is chosen sufficiently large, by Lemma 5 we may assume that for each $x, y \in X$ and each $i = 1, 2, \ldots, t$, the inequality $|\rho(x, A_{ij}) - \rho(y, A_{ij})| \geq \Delta_i$ holds for at least $r/16s$ indices j, where Δ_i depends on x, y and is as in the Lemma (one can take $r = \text{const.} s \log n$, as can be shown using a suitable version of the Chernoff inequality). We fix such a collection of the A_{ij} and define a mapping $f : M \to \ell_p^{tr}:$ if the coordinates in ℓ_p^{tr} are indexed the same way as the sets A_{ij} , we define f componentwise by $f(x)_{ij} = \rho(x, A_{ij})$.

Since $|\rho(x, A) - \rho(y, A)| \leq \rho(x, y)$ holds for any set A, we obtain

$$
||f(x)-f(y)||_p \leq t^{1/p}r^{1/p}\rho(x,y).
$$

On the other hand, we have

$$
||f(x)-f(y)||_p = \left(\sum_{i=1}^t \sum_{j=1}^r |\rho(x, A_{ij}) - \rho(y, A_{ij})|^p\right)^{1/p} \ge \left(\sum_{i=1}^t \frac{r}{16s} \Delta_i^p\right)^{1/p};
$$

using Hölder's inequality, we get $\sum_{i=1}^{t} \Delta_i^p \geq (\sum_i \Delta_i)^p / t^{p-1} = (\rho(x,y)/4)^p / t^{p-1}$,

^{*} The proofs in [LLR95] and [Bou85] argue for the $s = 2$ case, but the generalization to an arbitrary s is entirely straightforward.

196 **J. MATOUŠEK** Isr. J. Math.

hence $||f(x) - f(y)||_p \ge \frac{1}{64}(r/s)^{1/p}t^{-(p-1)/p}\rho(x,y)$. Thus after an appropriate scaling, f is a D-embedding with $D = O(t) = O(\log n/p)$.

References

- [Alo86] N. Alon, *Eigenvalues* and *expanders,* Combinatorica 6 (1986), 83-96.
- [AS92] N. Alon and J. Spencer, The *Probabitistic Method,* Wiley, New York, 1992.
- [AR92] J. Arias-de-Reyna and L. Rodriguez-Piazza, *Finite metric spaces needing high dimension for Lipschitz embeddings in Banach spaces,* Israel Journal of Mathematics 79 (1992), 103-111.
- [Bou85] J. Bourgain, *On Lipschitz embedding of finite metric spaces in Hilbert* space, Israel Journal of Mathematics 52 (1985), 46-52.
- [BDK66] J. Bretagnolle, D. Dacunha-Castelle and J. L. Krivine, *Lois stables et es*paces L^P, Annales de l'Institut Henri Poincaré. Probabilités et Statistiques, Sect. B2 (1966), 231-259.
- [BMW86] J. Bourgain, V. Milman and H. Wolfson, *On type of metric* spaces, Transactions of the American Mathematical Society 294 (1986), 295-317.
- [Enf69a] P. Enflo, *On a problem of Smirnov,* Arkiv Matematik 8 (1969), 107-109.
- [Enf69b] P. Enflo, *On* the *nonexistence of uniform homeomorphisms between Lp*spaces, Arkiv Matematik 8 (1969), 103-105.
- [Fic88] B. Fichet, *Lp-spaces in* data *analysis,* in *Classification and Related Methods of* Data *Analysis* (H. H. Bock, ed.), North-Holland, Amsterdam, 1988, pp. 439-444.
- [JL84] W. Johnson and J. Lindenstrauss, *Extensions of Lipschitz* maps *into a Hilbert* space, Contemporary Mathematics 26 (Conference in Modern Analysis and Probability), American Mathematical Society, 1984, pp. 189-206.
- $[JLSS7]$ W. Johnson, J. Lindenstrauss and G. Schechtman, *On Lipschitz embedding of finite metric spaces in low dimensional normed spaces, in Geometrical* Aspects of Functional Analysis (J. Lindenstrauss and V. D. Milman, eds.), Lecture Notes in Mathematics 1267, Springer-Verlag, Berlin-Heidelberg, 1987, pp. 177-184.
- **[JS88]** M. Jerrum and A. Sinclair, *Conductance and the rapid mixing property for Markov chains:* The *approximation of* the *permanent resolved,* in *Proceedings of the 20th ACM Symposium on Theory of Computing,* 1988, pp. 235-244.
- [LLR95] N. Linial, E. London and Yu. Rabinovich, *The geometry of graphs and some of its algorithmic applications,* Combinatorica 15 (1995), 215-245.
- [Lov93] L. Lovász, *Combinatorial Problems and Exercises (2nd ed.), Akadémiai* Kiad6, Budapest, 1993.
- [Ma91] J. Matoušek, *Note on bi-Lipschitz embeddings into normed spaces*, Commentationes Mathematicae Universitatis Carolinae 33 (1992), 51-55.
- [Ma95] J. Matougek, *On the distortion required for embedding finite metric spaces into normed* spaces, Israel Journal of Mathematics 93 (1996), 333-344.